Mycological quality of noni (Morinda citrifolia) foliar infection and susceptibility to a novel agent

Amadi Lawrence O and Seth Mercy O

Abstract
Foliar infection of Noni poses a great challenge to farmers, mycobiologists and phytopathologists despite the broad spectrum of bioactive and therapeutic potentials of the plant. This study investigates the mycological quality of Noni foliar infection and susceptibility to a novel agent (Alum). The mycological quality was assessed by culture-dependent technique using standard mycological procedures and susceptibility of isolates determined by disc and agar well diffusion methods and inhibition zones (IZs) were measured in millimetre. Fungi identified include Aspergillus flavus, A. fumigatus, A. niger and Penicillium species. Relative abundance (%) of fungal species in foliar infection were A. fumigatus (75%) being the most abundant followed by A. niger and A. flavus (50%) respectively and Penicillium (25%) species. Susceptibility assay of these species indicated that Alum compared appreciably with Ketoconazole (control) on dose-dependent fashion by both techniques. Data revealed that A. flavus (36.0mm), A. fumigatus (32.5mm) and Penicillium (30.2mm) were the most susceptible and the least was A. niger (30.0mm) with the novel agent. This research concludes that Alum could be used as an alternative cost-effective and ecofriendly novel or natural treatment agent to foliar related diseases or infections.

Keywords: noni, mycoflora, alum, foliar infection, ketoconazole

Introduction
Morinda citrifolia (Noni) is an important and most popularly cultivated plant of the family (Rubiaceae), genus Morinda, a native of Southeast Asia and now pan-tropically distributed [1, 2]. Traditionally, Noni was used as food and for treatment of a variety of diseases [3-6]. Recently, several parts of the plant such as leaves, roots, fruits, stem bark are extensively studied due to wide spectrum bioactivity and therapeutic significance. A variety of diseases have been associated with the shoot of Noni plant ranging from leaf blight, shot hole, black leaf spot, anthracnose, sooty mould, stem cancer and blight, fruit blight, cracking and rot, black flag to plant death as well as phytoplasma disease [7, 8, 9, 10]. The plant leaves with phytoplasma (foliar) disease presents profound reduction in growth, stunted or dwarfed with puckers upwards and inwards as well as lamina shrinkages from petiole to the tip [9]. However, study on the mycoflora of Noni shoot is limited especially those associated with foliar diseases, prevention or management. Many genera of fungi have been implicated as aetiogenic agents of Noni shoot diseases such as Phytophthora, Sclerotium rolfsii, Colletotrichum and Rhizopus [7, 11]. Mycoflora from foliar infection was treated with novel or natural compounds such as potash alum (potassium aluminium sulphate) because of its nontoxicity, affordability and eco-friendliness. Alum finds application in a wide variety of anthropogenic activities such as drug, food processing and preservation, domestic and industrial water treatments, antimicrobial agent, cosmetics and pharmaceutical industries as well as for treatment of ‘Ich and white eye’ diseases in fishes [12-16]. The study attempts to identify the mycoflora associated with foliar infection and their susceptibility to a novel agent, ‘Alum’.

Materials and Methods
Sample source and Collection
Noni with foliar disease were plucked with sterile hand gloves into sterile Polyethylene bag from Dilomat farm and services, Rivers State University, Nkpolu-Oroworukwo, Port Harcourt.
Fresh Noni with foliar disease (infected foliage with wrinkles or shrinking upward and inward) Plate 1 were collected/harvested from Dilomat farms and conveyed to the Department of Microbiology, Rivers State University, Port Harcourt for analyses.
Plate 1: Foliar infection of Noni (shrinking upward and inward) as observed at Dilomat farm.

Preparation of Alum and discs
Potassium aluminium sulphate (Vickers Laboratories, Ltd., England) was prepared by reconstituting appropriate quantity in sterile distilled water (w/v). Different concentrations of Alum were formulated by reconstituting appropriate quantities such as 2.0, 3.0, 4.0 and 5.0g in 100ml (w/v) to obtain 2- 5% respectively. Sterile discs (6mm diameter) were made of Whatman filter paper using an office perforating device.

Preparation of samples for mycological analysis
A 25gm portion of foliar infected sample was washed, cut in pieces (with sterile knife) and blended with a mechanical grinder in 225ml of sterile normal saline to obtain the homogenate. Further decimal dilutions were carried out before inoculation of 0.1ml aliquot onto surface-dried pre-sterilised Sabouraud’s dextrose agar (SDA; Titan Biotech Ltd, India). Followed by incubation at 25±2°C for 2 or more days.

Macroscopic and microscopic fungal cultures
Discrete fungal colonies were isolated, characterised and identified according to their shape, colour, texture and contour, and microscopically under x10 and x40 magnification by infiltration with lactophenol cotton blue [17, 18]. Cultures of each fungus was further grown for viability, confirmed and maintained on SDA and slants at 5°C for further assay.

Antibiogram/susceptibility testing procedure
Antimycotic susceptibility test was carried out by agar well diffusion (AWD) and disc diffusion (DD) methods [19]. After adjustment of fungal cultures of 2-5days on SDA to a 0.5 McFarland turbidity standard, they were aseptically plated with the various Alum concentrations and equidistantly spaced from one another and incubated. An antimycotic drug, Ketoconazole (2.0mg/ml; Janseen, Pharmaceuticals, New Jersey, USA) was used as control both for AWD and DD methods respectively. Colony diameters were measured and the mean and standard

Statistical Analysis
Means of duplicate measurements were determined for each sample using Microsoft Excel® 2016.

Results
Table 1, depicts the inhibitory effects of Alum to fungi isolated from foliar disease/infection of Noni. Inhibition zones or susceptibility of fungal isolates to Alum were observed with increasing concentrations of Alum treatment (dose dependent). The inhibitory pattern of different concentrations of Alum by AWD and DD techniques revealed more profound effects on the isolates by AWD than with DD (Table 1). The data revealed that two (2) genera of fungi were isolated; Aspergillus and Penicillium. The most sensitive to Alum at various concentrations was A. flavus, followed by A. fumigatus and Penicillium sp with A. niger as the least. Results showed relatively larger IZs as Alum concentrations increased which almost equals those of control.

Discussion
Foliar infection or disease has over the years been a major challenge to farmers, mycobiologists and phytopathologists considering the huge economic potentials of Noni. The major genera of fungi identified were Aspergillus and Penicillium and may not be unconnected with foliar phytoplasma disease first reported by [9]. However, the report did not identify the microbes associated with the disease. Aspergillus plays significant role phytopathogenetically as well as ecologically by production of enzymes, e.g., polygalacturonase, capable of degrading starches, hemicelluloses, celluloses, etc. [20, 21, 22]. However, It could be said that, these enzymes can negatively affect the tender structural architecture of Noni foliage to present the typical condition shown in Plate 1. The relative abundance (%) of fungal isolates associated with Noni foliar disease/infection are shown in Figure 1. The data shows that there are two (2) genera of fungi; Aspergillus and Penicillium. The dominant genus, Aspergillus, has A. fumigatus (75%) as most abundant species, followed by A. niger and A. flavus (50%) respectively, the least being Penicillium species (25%).

Fig 1: Relative abundance (%) of Fungal isolates associated with Noni foliar disease.
diversity of foliar mycoflora may be attributed to soil, climate/weather and other environmental conditions which in turn impacts the microbial community structure where the
plant is grown [7, 20, 23, 24, 25].

The antimycotic potentials of Alum has been well
documented in our previous studies (in vitro and in fields)
against fungi such as Aspergillus niger, A. flavus, A. terreus,
Penicillium crystallium, Saccharomyces cerevisiae,
Candida albicans, Geotrichum candidum and Fusarium
species [15, 20]. Its activities against fungi in the present study
was in consonance with previous reports. As an eco-friendly
natural agent it could be exploited and adopted to ameliorate
or combat phytoplasma disease as well as other mycotic
infections of plants. Its close comparison with Ketoconazole
underscores antifungal efficacy.

Conclusion
The study revealed that two genera (Aspergillus and
Penicillium) of fungi were identified to be associated with
phytoplasma disease of Noni. Alum treatment against these
fungi exhibited appreciable mycotic activity comparable to
the control which if explored could serve as a novel agent
for the prevention, control and/or management of fungal
infections.

Acknowledgements
We appreciate the magnanimity of Chief MM. Chinda,
CEO/MD and his Technical team lead by Mr. Francis U.
Abel all of Dilomat Farms and Services Ltd, Rivers State
University, Nkpolu-Oworukwo, Port Harcourt for
supplying the Noni plant samples used for this study.

References
for Consumers and Growers, 1st ed.; Permanent
Agriculture Resources: Holualoa, HI, USA 2006, 67-
80.
2. Almeida ES, Oliveira D, Hotza D. Properties and
Applications of Morinda citrifolia (Noni): A Review.
Comprehensive Reviews in Food Science and Food
Palu AK, Anderson G. Morinda citrifolia (noni): A
literature review and recent advances in noni research.
https://doi.org/1671-4083.
Pythoconstituents and Their Influence on Antimicrobial
Properties of Morinda citrifolia L. Research J Medicinal
Plants 2012;6(6):441-448.
5. Assi RA, Darwis Y, Abdulbaqi IM, khan AA,
Vuanghao L, Laghari MH. Morinda citrifolia (Noni): A
comprehensive review on its industrial uses,
pharmacological activities, and clinical trials. Arabian J
6. Amadi LO, Nwala H. Preliminary investigation on
microflora associated with fermentation of noni
(Morinda citrifolia) fruit and its nutritional
components. International Journal of Biotechnology
and Microbiology 2021;3, (2):01-04.
7. Nelson SC, Abad ZG. Phytophthora morindae a new
species causing black flag disease on Noni (Morinda
8. Jackson G, McKenzie E. Guignardia morindae and
Noni shot-hole disease (313). Pacific pests, Patogens
and Weeds – Online edn. Produced with Support from
the Australian Centre International Agriculture
9. Sarwade PP, Sarwade KP, Chavan SS. New First
Report of Foliar Phytoplasma Disease on Bartondi
10. Jumar, Yusriadi, Surtinah. Control of Anthracnose
disease in Chili with Several doses of Noni leaf
11. Kavitha PG, Umadevi M. Medicinal Properties and
Fests and Diseases of Noni – A Review. Research J
12. Alzomor AK, Moharram AS. Al Absi NM. Formulation
and Evaluation of Potash alum as deodorant lotion and
after shaving astringent as cream and gel. Int. Current
13. Efuuwewere BJO, Amadi LO. Effects of Preservatives
on the Bacteriological, chemical and
sensory qualities of mangrove oyster (Crassostrea
gasar) harvested from the Niger Delta Region, Nigeria.
British Journal of Applied Science and Technology
2015;5(1):76-84.
AN, Rashidi NIA, Muruagahia C, Shari AS. Potassium
aluminium sulphate (Alum) inhibits growth of Human
axillary malodour-producing skin flora in vitro. J
Clinical Health Science; 2016;1(1): 59-63.
15. Amadi LO, Udoh EJ, Thompson RU, Benjamin RG,
nMom FW. (2019). Antimycotic Potential of Alum on
Postharvest Deterioration of Tomato. Microbiology
DOI:10.9734/MRJII/2019/v29i330165.
16. Ade GV, Makode PM. Ich and White eye disease
management in Fishes using novel components. Int. J
17. Forbes BA, Sahm DE, Weissfeld
USA. 2007.
18. Cheesbrough, M. District laboratory practices in
tropical countries. Volume 2 part 2 Cambridge
19. Kirby, W.M.M., Bauer, A.W., Sherris, T.C., and Truck,
M. (1966), Antibiotic susceptibility testing by a
standardized single disc method, American Journal of
Clinical Pathology, 1966;45:493 - 496.
20. Lee S, Park MS, Lim YW. Diversity of Marine-Derived
Aspergillus from Tidal Mudflats and Sea Sand in
Taxonomic revision of Eurotium and transfer of species
22. Maldonado MC, Cáceres S, Galli E, Navarro AR.
Regulation of the production of polygalacturonase by
Aspergillus niger. Folia Microbiol (Praha),
23. Jefferey SB, Daniel PR, Estelle RC. Microbial
community structure and function in the sphersphere
as affected by soil and seed type. Can. J Microbiol
1999;45:138-144.
Tan W, Cheng C. Composition and diversity of
